A Relaxation Scheme for Solving the Boltzmann Equation Based on the Chapman-Enskog Expansion

نویسندگان

  • Shi Jin
  • Lorenzo Pareschi
  • Marshall Slemrod
چکیده

In [16] a visco-elastic relaxation system, called the relaxed Burnett system, was proposed by Jin and Slemrod as a moment approximation to the Boltzmann equation. The relaxed Burnett system is weakly parabolic, has a linearly hyperbolic convection part, and is endowed with a generalized entropy inequality. It agrees with the solution of the Boltzmann equation up to the Burnett order via the Chapman-Enskog expansion. We develop a one-dimensional non-oscillatory numerical scheme based on the relaxed Burnett system for the Boltzmann equation. We compare numerical results for stationary shocks based on this relaxation scheme, and those obtained by the DSMC (Direct Simulation Monte Carlo), by the Navier-Stokes equations and by the extended thermodynamics with thirteen moments (the Grad equations). Our numerical experiments show that the relaxed Burnett gives more accurate approximations to the shock profiles of the Boltzmann equation obtained by the DSMC, for a range of Mach numbers for hypersonic flows, than those obtained by the other hydrodynamic systems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A gas-kinetic BGK scheme for semiclassical Boltzmann hydrodynamic transport

A class of gas-kinetic BGK schemes for solving quantum hydrodynamic transport based on the semiclassical Boltzmann equation with the relaxation time approximation is presented. The derivation is a generalization to the development of Xu [K. Xu, A gas-kinetic BGK scheme for the Navier–Stokes equations and its connection with artificial dissipation and Godunov method, from gas-kinetic theory, J. ...

متن کامل

Initialization of a Lattice Boltzmann Model with Constrained Runs (Extended Version)

In this article, we perform a numerical stability and convergence analysis of the constrained runs initialization scheme for a lattice Boltzmann model. Gear and Kevrekidis developed this scheme in the context of coarse-grained equation-free computing. Given the macroscopic initial fields, we study the mapping of these variables to the higher-dimensional space of lattice Boltzmann variables. The...

متن کامل

A Mathematical Pde Perspective on the Chapman–enskog Expansion

This paper presents in a synthetic way some recent advances on hydrodynamic limits of the Boltzmann equation. It aims at bringing a new light to these results by placing them in the more general framework of asymptotic expansions of Chapman–Enskog type, and by discussing especially the issues of regularity and truncation. The present article is one of two companion papers on the Chapman–Enskog ...

متن کامل

Numerical Extraction of a Macroscopic PDE and a Lifting Operator from a Lattice Boltzmann Model

Lifting operators play an important role in starting a lattice Boltzmann model from a given initial density. The density, a macroscopic variable, needs to be mapped to the distribution functions, mesoscopic variables, of the lattice Boltzmann model. Several methods proposed as lifting operators have been tested and discussed in the literature. The most famous methods are an analytically found l...

متن کامل

Initialization of Lattice Boltzmann Models with the Help of the Numerical Chapman-Enskog Expansion

We extend the applicability of the numerical Chapman–Enskog expansion as a lifting operator for lattice Boltzmann models to map density and momentum to distribution functions. In earlier work [Vanderhoydonc et al. Multiscale Model. Simul. 10(3): 766-791, 2012] such an expansion was constructed in the context of lifting only the zeroth order velocity moment, namely the density. A lifting operato...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002